Approximate Shortest Descent Path on a Terrain

نویسندگان

  • Sasanka Roy
  • Sachin Lodha
  • Sandip Das
  • Anil Maheshwari
چکیده

A path from a point s to a point t on the surface of a polyhedral terrain is said to be descent if for every pair of points p = (x(p), y(p), z(p)) and q = (x(q), y(q), z(q)) on the path, if dist(s, p) < dist(s, q) then z(p) ≥ z(q), where dist(s, p) denotes the distance of p from s along the aforesaid path. Although an efficient algorithm to decide if there is a descending path between two points is known for more than a decade, no efficient algorithm is yet known to find a shortest descending path from s to t in a polyhedral terrain. In this paper we propose an (1 + 2)-approximation algorithm running in polynomial time for the same.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shortest Monotone Descent Path Problem in Polyhedral Terrain

Given a polyhedral terrain with n vertices, the shortest monotone descent path problem deals with finding the shortest path between a pair of points, called source (s) and destination (t) such that the path is constrained to lie on the surface of the terrain, and for every pair of points p = (x(p), y(p), z(p)) and q = (x(q), y(q), z(q)) on the path, if dist(s,p) < dist(s, q) then z(p) z(q), whe...

متن کامل

Shortest Gently Descending Paths

A path from s to t on a polyhedral terrain is descending if the height of a point p never increases while we move p along the path from s to t. We introduce a generalization of the shortest descending path problem, called the shortest gently descending path (SGDP) problem, where a path descends, but not too steeply. The additional constraint to disallow a very steep descent makes the paths more...

متن کامل

Using Pseudo Approximation Algorithms to Approximate Shortest Paths Above a Terrain

In this project, we address a general technique for constructing an ε-approximation algorithm out of a so-called pseudo approximation algorithm. We then show how this technique can be applied to the problem of finding the Lp-shortest path above a polyhedral terrain. Our results includes a new approximation algorithm that for any p ≥ 1, computes a (2(1− 1 p ) + ε)-factor approximation of the Lp-...

متن کامل

Approximate Shortest Descending Paths

We present an approximation algorithm for the shortest descending path problem. Given a source s and a destination t on a terrain, a shortest descending path from s to t is a path of minimum Euclidean length on the terrain subject to the constraint that the height decreases monotonically as we traverse that path from s to t. Given any ε ∈ (0, 1), our algorithm returns in O(n log(n/ε)) time a de...

متن کامل

An Approximation Algorithm for Shortest Descending Paths

A path from s to t on a polyhedral terrain is descending if the height of a point p never increases while we move p along the path from s to t. No efficient algorithm is known to find a shortest descending path (SDP) from s to t in a polyhedral terrain. We give a simple approximation algorithm that solves the SDP problem on general terrains. Our algorithm discretizes the terrain with O(nX/2) St...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007